Exam E (Part II)

Name

Please Note: Present you solutions in a well organized, legible way. Calculators may be used *only* in elementary computational mode, and not in calculus mode (even for exploratory purposes).

1a. Let f(x) be a function that is continuous for all x and let F(x) be any anti-derivative of f(x). Explain why $F(x + dx) - F(x) \approx f(x) \cdot dx$ for any very small number dx.

1b. Check the approximation in the situation $f(x) = x^2$, $F(x) = \frac{1}{3}x^3$, x = 2, and dx = 0.001.

2. Consider the function $f(x) = x^2(x-7)^{\frac{1}{3}}$. **i.** Verify (show all steps) that $f'(x) = \frac{7(x^2-6x)}{3(x-7)^{\frac{2}{3}}}$.

ii. Locate the critical numbers for y = f(x) on the number line below.

At what points on the graph does y = f(x) have horizontal or vertical tangents?

 $>_{x}$

iii. Determine the interval(s) over which f is increasing and those over which f is decreasing, as well as the local maxima and minima of f.

3. You are given a function that has the lines y = 1 and y = -1 as horizontal asymptotes and the lines x = -1 and x = 2 as vertical asymptotes. The function also satisfies f'(x) > 0 for x < -1

and x > 2, and f'(x) < 0 for -1 < x < 2, as well as f''(x) > 0 for x < -1 and -1 < x < 1 and f''(x) < 0 for 1 < x < 2 and 2 < x. In the space provided below draw a careful sketch of a graph that could be the graph of y = f(x).

4. Consider the long sum

$$(2)^{3} \cdot \frac{1}{1000} + (2 + \frac{1}{1000})^{3} \cdot \frac{1}{1000} + (2 + \frac{2}{1000})^{3} \cdot \frac{1}{1000} + (2 + \frac{3}{1000})^{3} \cdot \frac{1}{1000} + \dots + (4 + \frac{999}{1000})^{3} \cdot \frac{1}{1000}$$

This sum can be approximated by the definite integral of a function. What is the function, what is the integral, and what is the approximate value of the sum?

5. The graph of a typical continuous function f(x) that is defined for all x is shown below. Select some number c on the x-axis and use it to define an area function A(x) for f(x).

a. Select some number c on the x-axis and use it to define an area function A(x) for f(x).

b. What is the important property that the function A(x) has (in the context of calculus)?

c. Take the special case $f(x) = x^3$ and c = 2 and determine the function A(x) explicitly.

6. Evaluate $\int x \tan^{-1} x^2 dx$. (Suggestion: use both integration by substitution and by parts.)

y =

8. A falling ball has two forces acting on it both in the vertical direction. The gravitational force is given by W = mg, where m is the mass of the ball and g is the gravitational constant. The drag is $D = cv^2$, where v is the velocity and c a constant of proportionality. Use Newton's second law to set up a differential equation that the motion of the ball satisfies.

