Exam E (Part II)

Name
Please Note: Present you solutions in a well organized, legible way. Calculators may be used only in elementary computational mode, and not in calculus mode (even for exploratory purposes).

1a. Let $f(x)$ be a function that is continuous for all x and let $F(x)$ be any anti-derivative of $f(x)$. Explain why $F(x+d x)-F(x) \approx f(x) \cdot d x$ for any very small number $d x$.

1b. Check the approximation in the situation $f(x)=x^{2}, F(x)=\frac{1}{3} x^{3}, x=2$, and $d x=0.001$.
$f(x) d x \approx \quad F(x+d x)-F(x) \approx$
2. Consider the function $f(x)=x^{2}(x-7)^{\frac{1}{3}}$.
i. Verify (show all steps) that $f^{\prime}(x)=\frac{7\left(x^{2}-6 x\right)}{3(x-7)^{\frac{2}{3}}}$.
ii. Locate the critical numbers for $y=f(x)$ on the number line below.

At what points on the graph does $y=f(x)$ have horizontal or vertical tangents?
iii. Determine the interval(s) over which f is increasing and those over which f is decreasing, as well as the local maxima and minima of f.
3. You are given a function that has the lines $y=1$ and $y=-1$ as horizontal asymptotes and the lines $x=-1$ and $x=2$ as vertical asymptotes. The function also satisfies $f^{\prime}(x)>0$ for $x<-1$

and $x>2$, and $f^{\prime}(x)<0$ for $-1<x<2$, as well as $f^{\prime \prime}(x)>0$ for $x<-1$ and $-1<x<1$ and $f^{\prime \prime}(x)<0$ for $1<x<2$ and $2<x$. In the space provided below draw a careful sketch of a graph that could be the graph of $y=f(x)$.
4. Consider the long sum

$$
(2)^{3} \cdot \frac{1}{1000}+\left(2+\frac{1}{1000}\right)^{3} \cdot \frac{1}{1000}+\left(2+\frac{2}{1000}\right)^{3} \cdot \frac{1}{1000}+\left(2+\frac{3}{1000}\right)^{3} \cdot \frac{1}{1000}+\cdots+\left(4+\frac{999}{1000}\right)^{3} \cdot \frac{1}{1000} .
$$

This sum can be approximated by the definite integral of a function. What is the function, what is the integral, and what is the approximate value of the sum?
$f(x)=\quad$ sum \approx
5. The graph of a typical continuous function $f(x)$ that is defined for all x is shown below. Select some number c on the x-axis and use it to define an area function $A(x)$ for $f(x)$.

a. Select some number c on the x-axis and use it to define an area function $A(x)$ for $f(x)$.

b. What is the important property that the function $A(x)$ has (in the context of calculus)?
c. Take the special case $f(x)=x^{3}$ and $c=2$ and determine the function $A(x)$ explicitly.

$$
A(x)=
$$

6. Evaluate $\int x \tan ^{-1} x^{2} d x$. (Suggestion: use both integration by substitution and by parts.)
\square
7. Find a solution $y=f(x)$ of the equation $y^{\prime}+3 x^{2} y=6 x^{2}$ that satisfies $f(0)=4$.

$$
y=
$$

8. A falling ball has two forces acting on it both in the vertical direction. The gravitational force is given by $W=m g$, where m is the mass of the ball and g is the gravitational constant. The drag is $D=c v^{2}$, where v is the velocity and c a constant of proportionality. Use Newton's second law to set up a differential equation that the motion of the ball satisfies.
\square
